

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 1/17

How Futile are Mindless Assessments of Roundoff
in Floating-Point Computation ?

Why should we care? What should we do?

Presented on 23 May 2005 to the Householder Symposium XVI in Seven Springs PA

The purpose of this presentation is to tempt you to read that very long document.

The purpose of that document is to persuade you to demand better support for
the diagnosis of numerical embarrassment, much of it due to roundoff.

Better support?

 See

<www.eecs.berkeley.edu/~wkahan/

Boulder.pdf

>

.

Hardware conforming to IEEE Standard 754 for Binary Floating-Point does
support better diagnostic tools than you are getting from programming languages
(except perhaps from a few implementations of C99) and program development
environments. That hardware support is atrophying for lack of exercise.

Use it or lose it.

 FOR DETAILS SEE <www.eecs.berkeley.edu/~wkahan/ Mind l ess.pd f

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 2/17

Rather than try to persuade you that Rounding-Error Analysis should be as
important to you as it is to me, and therefore deserves your generous support,

I shall assume that you would rather have nothing to do with it.

Almost all students of Mathematics and Computer Science incline this way.

I believe that,
should a (presumably rare) numerical anomaly embarrass you,

you would prefer to determine as quickly and quietly as possible
(in case it’s your own fault) whom to blame.

Rather than present a general assessment of ways to diagnose and sometimes
cure numerical embarrassments …

(that can be found in my lengthy …/Mindless.pdf and …/Boulder.pdf),

I shall titillate you with some examples drawn from …/Mindless.pdf .

Our first examples are

Errors Designed Not To Be Found

.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 3/17

Parentheses

 in Microsoft’s

Excel 2000

 spreadsheet can have uncanny powers:

Values

Excel 2000

 Displays for Several Expressions

Besides generating an extra digit “3” and rounding away 15 “9”s,

Excel

changed the value of an expression placed between parentheses from zero to
something else. Why?

Apparently

Excel

 rounds

Cosmetically

 in a futile attempt to make Binary
floating-point appear to be Decimal. This is why

Excel

 confers supernatural
powers upon some (not all) parentheses and induces other inconsistencies.

Expression

1

.

23456789012345000E+00

<– Entered to help count digits

 V = 4/3 displays ... 1

.

33333333333333000E+00

Does

Excel

 carry 15 sig. dec.?

 W = V - 1 3

.

3333333333333 3000E-01

Whence comes the 15th 3 ?

 X = W*3 1

.

00000000000000000E+00

Where went all 15 of the 9s ?

 Y = X - 1 0

.

00000000000000000E+00

 They all went away

!

 Z = Y*2^52 0

.

00000000000000000E+00

 Really all gone.

 (4/3 - 1)*3 - 1 0

.

00000000000000000E+00

 Yes, gone.

((4/3 - 1)*3 - 1) -2

.

22044604925031000E-16

(But not

ENTIRELY

 gone

!

)

((4/3 - 1)*3 - 1)*2^52 -1

.

00000000000000000E+00

Excel’s arithmetic is weird.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 4/17

11 floating-point numbers X between 1 – 5

/

2

53

 and 1 – 13

/

2

53

 all look the same displayed:

11 Consecutive DistinctValues X Displayed as “ 0.999999999999999000…”

27 distinct floating-point numbers X between 1 – 4

/

2

53

 and 1 + 22

/

2

52

 all look the same displayed.

 27 Consecutive Distinct Values X Displayed as “ 1.00000000000000000… ”

 43 Consecutive Distinct Values Y Displayed as “ 1024.5000000000… ”

How can a user of

Excel

 debug his work without knowing which operations
depend not upon the values of their arguments but upon how they display?

 # (X–1) SIGN(X–1) FLOOR(X) (X < 1) (X = 1) ACOS(X) X–1
8 … < 0 –1 0 TRUE FALSE … > 0 … < 0
3 … < 0 –1 0 TRUE FALSE … > 0 0

 #

CEIL(X) FLOOR(X)

(X < 1) (X = 1) X–1 (X–1) SIGN(X–1) ACOS(X)

4 1 1 FALSE TRUE 0 … < 0 –1 … > 0
1 1 1 FALSE TRUE 0 0 0 0
7 1 1 FALSE TRUE 0 … > 0 +1 #NUM

!

15 1 1 FALSE TRUE … > 0 … > 0 +1 #NUM

!

 # Displayed Y ROUND(Y) ROUND(Y–25) ROUND(Y–925)

19 1024

.

500000000… 1025 999 99
2 1024

.

500000000… 1025 1000 99
22 1024

.

500000000… 1025 1000 100

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 5/17

How can Microsoft cure those of

Excel

’s anomalies exhibited here?

• Switch

Excel

’s floating-point to honest decimal floating-point conforming
to IEEE Standard 754 (2008) . This would be the best remedy.

Maybe after IBM’s

Lotus 123

 does that,

Excel

 will imitate it.

In promotional advertisements for a certain software company,
the word “Innovate” often appears where “Imitate” would be more truthful.

Decimal’s great advantage over binary is that, if enough digits are displayed,

What You See is What You Get.

Meanwhile, until then, . . .

• Allow

Excel

’s users to display up to 17 sig. dec. instead of at most 15;
and eschew Cosmetic Rounding;

and put some advice about the differences between binary
and decimal into Excel’s HELP files.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 6/17

What’s so special about 15 sig. dec. and 17 sig. dec. ?

Displaying at most 15 sig. dec., as Excel does, ensures that a number entered
with at most 15 sig. dec., converted to binary floating-point rounded correctly
to 53 sig. bits (which is what Excel’s arithmetic carries), and then displayed
converted back to decimal floating-point rounded correctly to at least as many
sig. dec. as were entered but no more than 15, will always display

 exactly the same number as was entered.

A decision to make Excel’s arithmetic seem to be Decimal instead of Binary
restricted Excel’s display to at most 15 sig. dec., thus hiding the deception well
enough to reduce greatly the number of calls upon Excel’s technical help-desk.

When symptoms of the deception are perceived they are routinely misdiagnosed; e.g., see David
Einstein’s column on p. E2 of the San Francisco Chronicle for 16 and 30 May 2005.

If distinct 53 sig. bit binary floating-point numbers are converted to decimal and
displayed correctly rounded to 17 sig. dec., they will always display differently.
And if the displayed numbers are converted back to binary and rounded correctly
to 53 sig. bits, they will reproduce the original binary floating-point numbers.

But displaying 17 sig. dec. exposes the non-decimal nature of the underlying
arithmetic as soon as a number entered as, for example, “ 8.04 ” displays as

 “ 8.0399 9999 9999 9991 ” .

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 7/17

And now for something entirely different …

Over-Zealous Compiler “Optimization”
. . . exploits the associative laws of arithmetic disregarding parentheses.

Consider slowly converging sums for infinite series, for updating averages,
for amortization schedules, for quadrature (numerical integration),
and for trajectories (differential equations), among other things.

Ideal infinite sum := ∑k≥1 term(k) is approximated by

Computed Sum := ∑1
N Term(k) + Tail(N)

in which Tail(N) approximates ∑k>N term(k) ever better as N increases.

But we shall not know N in advance. It may mount into billions.

Billions of rounding errors can degrade severely a sum computed naively :

[xxxxxx... Old Sum …xxxxxx]
+ [xxxxxx… New Term …xxxxxx]

[xxxxxx… New Sum …xxxxx] […lost digits…]

The lost digits affect the Computed Sum about as much as if those digits had first
been discarded from each New Term. The effect is severe if N is gargantuan.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 8/17

The following program compensates for those lost digits;. For simplicity, it has
been written assuming every Term(k) > Term(k+1) > Term(k+2) > … > 0 . …

Sum := 0.0 ; Oldsum := –1.0 ; comp := 0.0 ; k := 0 ;
While Sum > Oldsum do …

k := 1+k ; Oldsum := Sum ; comp := comp + Term(k) ;
Sum := comp + Oldsum ;
comp := (Oldsum – Sum) + comp ;

 End While Loop;
Sum := Sum + (Tail(k) + comp) .

However, an over-zealously “optimizing” compiler deduces that the statement
 comp := (Oldsum – Sum) + comp ;

is merely an elaborate way to recompute comp := 0.0 , and therefore scrubs out
all references to comp, thus simplifying and slightly speeding up the Loop:

Sum := 0.0 ; Oldsum := –1.0 ; k := 0 ;
While Sum > Oldsum do …

k := 1+k ; Oldsum := Sum ;
Sum := Term(k) + Oldsum ;

 End While Loop;
Sum := Sum + Tail(k) .

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 9/17

Example of Pejoration by Over-Zealous “Optimization”:

Our task is to compute Sum := ∑1
N Term(k) + Tail(N) given that

Term(k) := 3465/(k2 – 1/16) + 3465/((k + 1/2)2 – 1/16) ,
Tail(k) := 3465/(k + 1/2) + 3465/(k + 1) ,

using each of the foregoing programs, one compensated, the other “optimized”.

Of course, a little mathematical analysis might render the programs unnecessary,
but programming a computer is easier and running it is cheaper than analysis.

Here are the results from a Fortran program run on an IBM T21 Laptop:

Even though the “Optimized” program’s Loop runs almost 10% faster, the
program run as written got a significantly better result about 25% sooner.

Do you see why?
If someone doesn’t, would you like him to “optimize” your floating-point?

Table 1: Final Computed Sum

Program: Compensated “Optimized”

Final Sum : 9240.000000000000 9240.000001147523

Time : 13.7 sec. 17.8 sec.

Loop-count K : 61,728,404 87,290,410

Time per Loop : 2.22E–7 sec. 2.04E–7 sec.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 10/17

How can a programmer unaware of the “optimization” debug it?

There is a way: Rerun both programs in different rounding modes afforded by
IEEE Standard 754 on fully conforming systems. Currently the only fully
conforming standard programming language is C99, and only on a very few
machines, but let’s not dwell on that now. On my machines each program can
be rerun first rounding every arithmetic operation Down (towards –∞) and
again rounding Up (towards +∞) without recompilation. Here are the results:

 Final Sums from Two Programs Rounded Differently

Evidently “optimization” has actually worsened the program’s accuracy and its
speed, and also its sensitivity to roundoff, which exposes the “optimization”.

Do you see why the “optimized” program Rounded Up ran almost forever?
If someone doesn’t, would you like him to “optimize” your floating-point?

Program: Compensated “Optimized”

Rounded to Nearest : 9240.000000000000 9240.000001147523

Rounded Down : 9239.999999999998 9239.999994834162

Rounded Up : 9240.000000000002 Ran almost forever

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 11/17

“Optimized” Register Spill
Sometimes compilers “spill” the contents of a wide register temporarily to a
narrow cell in memory and later reload it having lost, presumably inadvertently,
some of the bits generated in the wide register. We would like to think nobody
concerned with the integrity of floating-point arithmetic would do such a thing.

Alas, MATLAB 6.5 does it on Wintel machines. Let’s see the evidence:

Wallace Givens’ n-by-n test matrix looks like this when n = 6 :

 22 18 14 10 6 2
 18 18 14 10 6 2
 14 14 14 10 6 2
 10 10 10 10 6 2
 6 6 6 6 6 2
 2 2 2 2 2 2

It can be derived from a discretization of an integral equation. Its eigenvalues
and eigenvectors can be computed accurately from simple formulas that shall be
used only to check the accuracy of MATLAB ’s and my eigensystem software.

The smallest eigenvalues cluster just above 1 ; the biggest reach over (4n/π)2 .
The eigenvectors have a special structure: Every eigenvector’s elements can be
obtained from any other’s by permuting its elements and reversing some signs.

The accuracy of computed eigenvectors belonging to small clustered eigenvalues
can be degraded by roundoff to an extent that grows about as fast as n4 .

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 12/17

I wrote a MATLAB program refiheig designed to Iteratively Refine
eigensystems computed for Hermitian matrices by MATLAB’s eig . It works
for versions 4.2 to 6.5 of MATLAB on PCs, versions 4.2 to 5.2 on old 68040-
based Macs. It is needed when dimensions are so big that roundoff accumulates
to obscure the results of eig excessively, or when roundoff prevents structural
symmetries in the data from propagating into the computed eigensystem.

Iterative refinement by refiheig often undoes these and other kinds of
accuracy loss without obliging its user to know what caused the loss.

The accuracy of refiheig is limited by the accuracy with which it can compute
residuals by matrix multiplication. By default on Wintel machines, MATLAB
6.5 accumulates these to 53 sig. bits. However, after the prefatory command

system_dependent(‘setprecision’, 64)
(or in version 4.2 without that command), matrix products are accumulated to
64 sig. bits before being stored back to 53. This is how Intel’s (in 1978) and
Motorola’s (in 1980) floating-points were originally designed to be used.

The results tabulated hereunder were obtained for n = 1000 on an IBM T21
laptop running Windows 2000 from MATLAB v. 6.5 accumulating matrix
products with 53 and then 64 sig. bits, and from v. 4.2 only with 64 sig. bits.
The tabulated residuals are compared with the “minimal” residual for the true
eigensystem computed almost correctly rounded from trigonometric formulas.

Alas, something goes awry.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 13/17

Table 2: Execution Times

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 52.5 sec. 52.9 sec. 122 sec.

refiheig 67.1 sec. 66.7 sec. 1171 sec.

Table 3: Residuals vs. minimal 2.3E-11

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 2.1E-9 1.2E-10 3.1E-9

refiheig 1.2E-10 2.9E-11 7.4E-12

Table 4: Eigenvector Accuracies in Sig. Bits

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 18.4 s.b. 23.4 s.b. 18.6 s.b.

refiheig 25.9 s,b. 30.2 s.b. 40.7 s.b.

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 14/17

Why is MATLAB version 6.5 so much (18 x) faster than version 4.2 ?

Why is v. 6.5’s refinement so much (3 sig. dec.) less accurate than v. 4.2’s ?

V. 6.5 splits big matrices into small blocks to incur fewer cache misses during
its blocked-matrix multiplications. These can run enormously faster than v.
4.2’s ordinary unblocked matrix multiplications which incur many cache misses.

But v. 6.5 spills sums of block products, each accumulated to 64 sig. bits, into
memory holding only 53. This squanders almost all advantages of extra-precise
accumulation, obscuring residuals while adding negligibly to speed. The
consequent loss of 10 sig. bits of ultimate accuracy could not have been detected
if we had compared only computed residuals instead of comparing computed
with known correct eigenvectors. Has anybody else noticed this spill anomaly?

The anomaly should not be blamed entirely upon MATLAB . It uses matrix-multiply subprograms
“optimized” by Intel for its Pentium architecture taking account of cache-line sizes and management.
If the subprograms stored sums of block products retaining all 64 sig. bits accumulated, the extra time
and memory required would be practically inconsequential.

Thus does petty optimization for speed induce a subtle but severe pejoration of
accuracy difficult to debug, even if noticed, for lack of access to source-code.

Sometimes inaccessible source-code cannot prevent diagnosis of formulas that
are algebraically correct but numerically dubious, as in the next example …

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 15/17

A Hypothetical Case Study: Bits Lost in Space
Imagine plans for unmanned astronomical observatories in outer space. For details see

§11 of Mindless.pdf .

Directions to planets and distant stars are specified by float angles named as follows:

Names of Angles used for Spherical Polar Coordinates

Angles must satisfy –π ≤ θ ≤ π and –π/2 ≤ φ ≤ π/2 , and similarly for Θ and Φ .

Two stars whose coordinates are (θ, φ) and (Θ, Φ) subtend an angle ψ at the observer’s
eye. This ψ is a function ψ(θ–Θ, φ, Φ) that depends upon θ and Θ only through their
difference | θ–Θ | mod 2π . We’ll compare 3 float implementations of this function ψ ;
they are called u, v and w . Of millions of tests, here are the few that aroused suspicion:

Which digits are correct ? Which if any of subprograms u, v and w dare you trust ?

Angle Symbols Relative to Horizon Relative to Ecliptic Plane Relative to Equatorial Plane

θ, Θ Azimuth Right Ascension Longitude

φ, Φ Elevation Declination Latitude

θ–Θ : 0.00123456784 0.000244140625 0.000244140625 1.92608738 2.58913445 3.14160085

φ : 0.300587952 0.000244140625 0.785398185 -1.57023454 1.57074428 1.10034931

Φ : 0.299516767 0.000244140654 0.785398245 -1.57079506 -1.56994033 -1.09930503

ψ ≈ u : 0.00158221229 0.0 0.0003452669770.000598019978 3.14082050 3.14055681

ψ ≈ v : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14061618 3.14061618

ψ ≈ w : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14078044 3.14054847

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 16/17

Which if any of subprograms u, v and w dare you trust? They were rerun on the suspect
data in different rounding modes mandated by IEEE Standard 754. Fortunately, they
were rerun on a system that permitted the directions of all default roundings (to nearest)
to be changed without recompilation of the subprograms. Here are some results:

Only subprogram w seems practically indifferent to changes in rounding’s
direction. In fact, it uses an unobvious formula stable for all admissible data.

Subprogram u uses a formula easy to derive but numerically unstable for
subtended angles too near 0 or π . Subprogram v uses a formula familiar to
astronomers though it loses half the digits carried when the subtended angle is
too near π , where astronomers are most unlikely to have tried it. See
Mindless.pdf for formulas.

Without access to source code, nor to another subprogram known to be reliable,
how else might you have decided which program(s) to distrust first?

θ–Θ : 0.000244140625 2.58913445

φ : 0.000244140625 1.57074428

Φ : 0.000244140654 -1.56994033

ψ ≈ u : 0.000598019920NaN arccos(>1) 0.000598019920 3.14061594 3.14067936 3.14082050

ψ ≈ v : 0.000244140581 0.000244140683 0.000244140581 3.14039660 3.14159274 3.14039660

ψ ≈ w : 0.000244140610 0.000244140683 0.000244140610 3.14078045 3.14078069 3.14078045

Rounded: To Zero To +Infinity To –Infinity To Zero To +Infinity To –Infinity

File: Mind1ess version dated November 12, 2012 6:27 pm

Prof. W. Kahan, University of California @ Berkeley Page 17/17

The ability to redirect rounding is mandated by IEEE Standard 754 (1985) for
floating-point arithmetic. It is a valuable diagnostic aid albeit far from foolproof.

Some compilers have supported dynamically redirected rounding, but almost no
programming languages support it. The exceptions are a few C99 compilers.

Java outlaws redirected rounding. See
 www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf .

The lack of use of this capability is leading to its atrophy. Use it or lose it.

For other desirable debugging tools we may wish were provided by programming
development systems, tools that employ high-precision floating-point and
interval arithmetic combined (they are not helpful enough by themselves), see
§14 of www.cs.berkeley.edu/~wkahan/Mindless.pdf , and …/Boulder.pdf .

For better exception-handling than provided by current programming languages
with the exceptions of C99 and perhaps Fortran 2003, see …/Grail.pdf and
…/ARITH_17U.pdf , and pp. 46 - 73 of …/Boulder.pdf .

