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How Futile are Mindless Assessments of Roundoff
in Floating-Point Computation ?

 

Why should we care?  What should we do?

 

Presented on  23 May 2005  to the  Householder Symposium XVI  in  Seven Springs PA

 

The purpose of this presentation is to tempt you to read that very long document.

The purpose of that document is to persuade you to demand better support for
the diagnosis of numerical embarrassment,  much of it due to roundoff.

 

Better support?

 

  See  

 

<www.eecs.berkeley.edu/~wkahan/

 

Boulder.pdf

 

>

 

.

Hardware conforming to  IEEE Standard 754  for  Binary Floating-Point  does 
support better diagnostic tools than you are getting from programming languages 
(except perhaps from a few implementations of  C99)  and program development 
environments.  That hardware support is atrophying for lack of exercise.

 

Use it or lose it.

 FOR DETAILS SEE  <www.eecs.berkeley.edu/~wkahan/ Mind l ess.pd f
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Rather than try to persuade you that  Rounding-Error Analysis  should be as 
important to you as it is to me,  and therefore deserves your generous support,

I shall assume that you would rather have nothing to do with it.

Almost all students of  Mathematics  and  Computer Science  incline this way.

I believe that,
should a  (presumably rare)  numerical anomaly embarrass you,

you would prefer to determine as quickly and quietly as possible
(in case it’s your own fault)  whom to blame.

Rather than present a general assessment of ways to diagnose and sometimes 
cure numerical embarrassments …

(that can be found in my lengthy  …/Mindless.pdf  and  …/Boulder.pdf),

I shall titillate you with some examples drawn from  …/Mindless.pdf .

Our first examples are  

 

Errors Designed Not To Be Found

 

.
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Parentheses

 

  in  Microsoft’s 

 

Excel 2000

 

  spreadsheet can have uncanny powers:

 

  

 

Values  

 

Excel 2000

 

  Displays for  Several Expressions

 

Besides generating an extra digit  “3”  and rounding away  15  “9”s,  

 

Excel

 

  
changed the value of an expression placed between parentheses from zero to 
something else.  Why?

Apparently  

 

Excel

 

  rounds  

 

Cosmetically

 

  in a futile attempt to make  Binary  
floating-point appear to be  Decimal.  This is why  

 

Excel

 

  confers supernatural 
powers upon some  (not all)  parentheses and induces other inconsistencies.

 

Expression

 

1

 

.

 

23456789012345000E+00

 

<– Entered to help count digits

 

 V = 4/3  displays ...  1

 

.

 

33333333333333000E+00

 

Does 

 

Excel

 

 carry 15 sig. dec.?

 

   W = V - 1          3

 

.

 

3333333333333 3000E-01

 

Whence comes the  15th  3 ?

 

     X = W*3          1

 

.

 

00000000000000000E+00

 

Where went all 15 of the  9s ?

 

       Y = X - 1      0

 

.

 

00000000000000000E+00

 

  They all went away 

 

!

 

         Z = Y*2^52   0

 

.

 

00000000000000000E+00

 

    Really all gone.

 

 (4/3 - 1)*3 - 1   0

 

.

 

00000000000000000E+00

 

      Yes,  gone.

 

((4/3 - 1)*3 - 1) -2

 

.

 

22044604925031000E-16

 

(But not  

 

ENTIRELY

 

  gone 

 

!

 

)

 

((4/3 - 1)*3 - 1)*2^52 -1

 

.

 

00000000000000000E+00

 

Excel’s arithmetic is weird.
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11  floating-point numbers  X  between  1 – 5

 

/

 

2

 

53

 

  and  1 – 13

 

/

 

2

 

53

 

  all look the same displayed:

 

        

 

11  Consecutive DistinctValues  X   Displayed as  “ 0.999999999999999000…”

 

 

 

27  distinct floating-point numbers  X  between  1 – 4

 

/

 

2

 

53

 

  and  1 + 22

 

/

 

2

 

52

 

   all look the same displayed.

 

    

 

 27  Consecutive Distinct Values  X  Displayed as  “ 1.00000000000000000… ” 

 

    

 

 43  Consecutive Distinct Values  Y  Displayed as  “ 1024.5000000000… ” 

 

How can a user of  

 

Excel

 

  debug his work without knowing which operations 
depend not upon the values of their arguments but upon how they display?

 

 # (X–1) SIGN(X–1) FLOOR(X) (X < 1) (X = 1) ACOS(X) X–1
8 … < 0 –1 0 TRUE FALSE … > 0 … < 0
3 … < 0 –1 0 TRUE FALSE … > 0 0

 # 

 

CEIL(X) FLOOR(X)

 

(X < 1) (X = 1) X–1 (X–1) SIGN(X–1) ACOS(X)

4 1 1 FALSE TRUE 0 … < 0 –1 … > 0
1 1 1 FALSE TRUE 0 0 0 0
7 1 1 FALSE TRUE 0 … > 0 +1 #NUM

 

!

 

 
15 1 1 FALSE TRUE … > 0 … > 0 +1 #NUM

 

!

 

 

 # Displayed  Y ROUND(Y) ROUND(Y–25) ROUND(Y–925)

19 1024

 

.

 

500000000… 1025 999 99
2 1024

 

.

 

500000000… 1025 1000 99
22 1024

 

.

 

500000000… 1025 1000 100
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How can  Microsoft  cure those of  

 

Excel

 

’s  anomalies exhibited here?

 

•  Switch  

 

Excel

 

’s  floating-point to honest decimal floating-point conforming
to  IEEE Standard 754 (2008) .  This would be the best remedy.

Maybe after  IBM’s 

 

Lotus 123

 

  does that,  

 

Excel

 

  will imitate it.

 

In promotional advertisements for a certain software company,
the word  “Innovate”  often appears where  “Imitate”  would be more truthful.

 

Decimal’s  great advantage over binary is that,  if enough digits are displayed,

 

What You See is What You Get.

 

Meanwhile,  until then,  . . . 

•  Allow  

 

Excel

 

’s  users to display up to  17  sig. dec.  instead of at most  15;
and eschew  Cosmetic Rounding;

and put some advice about the differences between binary
and decimal into  Excel’s  HELP  files.
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What’s so special about  15 sig. dec.  and  17 sig. dec. ?

Displaying at most  15 sig. dec.,  as  Excel  does,  ensures that a number entered 
with at most  15 sig. dec.,  converted to binary floating-point rounded correctly 
to  53 sig. bits  (which is what  Excel’s  arithmetic carries),  and then displayed 
converted back to decimal floating-point rounded correctly to at least as many 
sig. dec. as were entered but  no more  than  15,  will  always  display 

 exactly  the same number as was entered.

A decision to make  Excel’s  arithmetic seem to be  Decimal  instead of  Binary  
restricted  Excel’s display to at most  15  sig. dec.,  thus hiding the deception well 
enough to reduce greatly the number of calls upon  Excel’s  technical help-desk.

When symptoms of the deception are perceived they are routinely misdiagnosed;  e.g., see  David 
Einstein’s  column on  p. E2  of the  San Francisco Chronicle  for  16  and  30 May 2005. 

If distinct  53 sig. bit binary floating-point numbers are converted to decimal and 
displayed correctly rounded to  17 sig. dec.,  they will  always  display differently.  
And if the displayed numbers are converted back to binary and rounded correctly 
to  53 sig. bits,  they will reproduce the original binary floating-point numbers.

But displaying  17 sig. dec. exposes the non-decimal nature of the underlying 
arithmetic as soon as a number entered as,  for example,    “ 8.04 ”   displays as

  “ 8.0399 9999 9999 9991 ” .
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And now for something entirely different … 

Over-Zealous Compiler  “Optimization”   
. . .  exploits the associative laws of arithmetic disregarding parentheses.

Consider slowly converging sums for infinite series,  for updating averages,
for amortization schedules,  for quadrature (numerical integration), 
and for trajectories  (differential equations),  among other things.

Ideal infinite sum := ∑k≥1 term(k)         is approximated by

Computed Sum := ∑1
N Term(k)  +  Tail(N)

in which  Tail(N)  approximates   ∑k>N term(k)   ever better as  N  increases.

But we shall not know  N  in advance.  It may mount into billions.

Billions of rounding errors can degrade severely a sum computed naively :

[xxxxxx... Old Sum …xxxxxx]
+ [xxxxxx… New Term …xxxxxx]
-------------------------------------
[xxxxxx… New Sum …xxxxx] […lost digits…] 

The lost digits affect the Computed Sum  about as much as if those digits had first 
been discarded from each  New Term.  The effect is severe if  N  is gargantuan.
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The following program compensates for those lost digits;.  For simplicity,  it has 
been written assuming every  Term(k) > Term(k+1) > Term(k+2) > … > 0 .  …

Sum := 0.0 ;  Oldsum := –1.0 ;  comp := 0.0 ;  k := 0 ;
While  Sum > Oldsum  do …

k := 1+k ;  Oldsum := Sum ;  comp := comp + Term(k) ;
Sum := comp + Oldsum ;
comp := (Oldsum – Sum) + comp ;

    End While Loop;
Sum := Sum + ( Tail(k) + comp ) .

However,  an over-zealously  “optimizing”  compiler deduces that the statement
 comp := (Oldsum – Sum) + comp ;

is merely an elaborate way to recompute  comp := 0.0 ,  and therefore scrubs out 
all references to  comp,  thus simplifying and slightly speeding up the  Loop:

Sum := 0.0 ;  Oldsum := –1.0 ;  k := 0 ;
While  Sum > Oldsum  do …

k := 1+k ;  Oldsum := Sum ;
Sum := Term(k) + Oldsum ;

    End While Loop;
Sum := Sum + Tail(k) .
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Example of Pejoration by Over-Zealous “Optimization”:

Our task is to compute   Sum := ∑1
N Term(k)  +  Tail(N)  given that 

Term(k) :=  3465/( k2 – 1/16 )  +  3465/( (k + 1/2 )2 – 1/16 )  , 
Tail(k)  :=  3465/( k + 1/2 )  +  3465/( k + 1 )  ,  

using each of the foregoing programs,  one compensated,  the other  “optimized”.

Of course,  a little mathematical analysis might render the programs unnecessary,
but programming a computer is easier and running it is cheaper than analysis.

Here are the results from a  Fortran  program run on an  IBM T21 Laptop:

Even though the  “Optimized”  program’s  Loop  runs almost  10%  faster,  the 
program run as written got a significantly better result about  25%  sooner.

Do you see why?
If someone doesn’t,  would you like him to  “optimize”  your floating-point?

Table 1:  Final Computed Sum

Program: Compensated “Optimized”

Final Sum : 9240.000000000000 9240.000001147523

Time : 13.7  sec. 17.8  sec.

Loop-count  K : 61,728,404 87,290,410

Time per Loop : 2.22E–7  sec. 2.04E–7  sec.
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How can a programmer unaware of the  “optimization”  debug it?

There is a way:  Rerun both programs in different rounding modes afforded by  
IEEE Standard 754  on fully conforming systems.  Currently the only fully 
conforming standard programming language is  C99,  and only on a very few 
machines,  but let’s not dwell on that now.  On my machines each program can 
be rerun first rounding every arithmetic operation  Down (towards –∞)  and 
again rounding  Up (towards +∞)  without recompilation.  Here are the results:

  Final  Sums  from Two Programs Rounded Differently 

Evidently  “optimization”  has actually worsened the program’s accuracy and its 
speed,  and also its sensitivity to roundoff,  which exposes the  “optimization”.

Do you see why the  “optimized”  program  Rounded Up  ran almost forever?
If someone doesn’t,  would you like him to  “optimize”  your floating-point?

Program: Compensated “Optimized”

Rounded to Nearest : 9240.000000000000 9240.000001147523

Rounded Down : 9239.999999999998 9239.999994834162

Rounded Up : 9240.000000000002 Ran almost forever
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“Optimized”  Register Spill
Sometimes compilers  “spill”  the contents of a wide register temporarily to a 
narrow cell in memory and later reload it having lost,  presumably inadvertently,  
some of the bits generated in the wide register.  We would like to think nobody 
concerned with the integrity of floating-point arithmetic would do such a thing.

Alas,  MATLAB  6.5  does it on  Wintel  machines.  Let’s see the evidence:

Wallace Givens’  n-by-n  test matrix looks like this when  n = 6 :

    22    18    14    10     6     2 
    18    18    14    10     6     2 
    14    14    14    10     6     2 
    10    10    10    10     6     2 
     6     6     6     6     6     2 
     2     2     2     2     2     2 

It can be derived from a discretization of an integral equation.  Its eigenvalues 
and eigenvectors can be computed accurately from simple formulas that shall be 
used only to check the accuracy of  MATLAB ’s  and my eigensystem software.

The smallest eigenvalues cluster just above  1 ;  the biggest reach over  (4n/π)2 .   
The eigenvectors have a special structure:  Every eigenvector’s elements can be 
obtained from any other’s by permuting its elements and reversing some signs.

The accuracy of computed eigenvectors belonging to small clustered eigenvalues 
can be degraded by roundoff to an extent that grows about as fast as  n4 .
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I wrote a  MATLAB   program  refiheig   designed to  Iteratively Refine 
eigensystems computed for  Hermitian  matrices by  MATLAB’s  eig .  It works 
for versions  4.2  to  6.5  of  MATLAB   on  PCs,  versions  4.2 to 5.2  on old 68040-
based  Macs.  It is needed when dimensions are so big that roundoff accumulates 
to obscure the results of  eig   excessively,  or when roundoff prevents structural 
symmetries in the data from propagating into the computed eigensystem.

Iterative refinement by  refiheig   often undoes these and other kinds of 
accuracy loss without obliging its user to know what caused the loss.

The accuracy of  refiheig   is limited by the accuracy with which it can compute 
residuals by matrix multiplication.  By default on  Wintel  machines,  MATLAB  
6.5  accumulates these to  53  sig. bits.  However,  after the prefatory command

system_dependent(‘setprecision’, 64)   
(or in version  4.2  without that command),  matrix products are accumulated to  
64  sig. bits before being stored back to  53.  This is how  Intel’s  (in 1978)  and  
Motorola’s (in 1980)  floating-points were originally designed to be used.

The results tabulated hereunder were obtained for  n = 1000  on an  IBM T21 
laptop running  Windows 2000  from  MATLAB  v. 6.5  accumulating matrix 
products with  53  and then  64  sig. bits,  and from  v. 4.2  only with  64  sig. bits.  
The tabulated residuals are compared with the  “minimal”  residual for the true 
eigensystem computed almost correctly rounded from trigonometric formulas.

Alas,  something goes awry.
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Table 2: Execution Times

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 52.5 sec. 52.9 sec. 122 sec.

refiheig 67.1 sec. 66.7 sec. 1171 sec.

Table 3: Residuals  vs.  minimal  2.3E-11  

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53  s.b. 64 s.b. 64 s.b.

eig 2.1E-9 1.2E-10 3.1E-9

refiheig 1.2E-10 2.9E-11 7.4E-12

Table 4: Eigenvector Accuracies in Sig. Bits

MATLAB v: v. 6.5 v. 6.5 v. 4.2

MxM sig. bits 53 s.b. 64 s.b. 64 s.b.

eig 18.4 s.b. 23.4 s.b. 18.6 s.b.

refiheig 25.9 s,b. 30.2 s.b. 40.7 s.b.
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Why is  MATLAB  version 6.5  so much  (18 x)  faster than  version 4.2 ?

Why is  v. 6.5’s  refinement so much  (3 sig. dec.)  less accurate than  v. 4.2’s ?

V. 6.5  splits big matrices into small blocks to incur fewer cache misses during 
its blocked-matrix multiplications.  These can run enormously faster than  v. 
4.2’s  ordinary unblocked matrix multiplications which incur many cache misses.

But  v. 6.5  spills sums of block products,  each accumulated to  64  sig. bits,  into 
memory holding only  53.  This squanders almost all advantages of extra-precise 
accumulation,  obscuring residuals while adding negligibly to speed.  The 
consequent loss of  10  sig. bits of ultimate accuracy could not have been detected 
if we had compared only computed residuals instead of comparing computed 
with known correct eigenvectors.  Has anybody else noticed this spill anomaly?

The anomaly should not be blamed entirely upon  MATLAB .  It uses matrix-multiply subprograms  
“optimized”  by  Intel  for its  Pentium  architecture taking account of cache-line sizes and management.  
If the subprograms stored sums of block products retaining all  64  sig. bits accumulated,  the extra time 
and memory required would be practically inconsequential.

Thus does petty optimization for speed induce a subtle but severe pejoration of 
accuracy difficult to debug,  even if noticed,  for lack of access to source-code.

Sometimes inaccessible source-code cannot prevent diagnosis of formulas that 
are algebraically correct but numerically dubious,  as in the next example …
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A Hypothetical Case Study:  Bits Lost in Space  
Imagine plans for unmanned astronomical observatories in outer space.  For details see

§11  of  Mindless.pdf  .

Directions to planets and distant stars are specified by  float   angles named as follows:

Names of Angles used for  Spherical Polar Coordinates  

Angles must satisfy  –π ≤ θ ≤ π  and  –π/2 ≤ φ ≤ π/2 ,  and similarly for  Θ  and  Φ .

Two stars whose coordinates are  (θ, φ)  and  (Θ, Φ)  subtend an angle  ψ  at the observer’s 
eye.  This  ψ  is a function  ψ(θ–Θ, φ, Φ)  that depends upon  θ  and  Θ  only through their 
difference  | θ–Θ | mod 2π .  We’ll compare  3 float  implementations of this function  ψ ;  
they are called  u,  v  and  w .  Of millions of tests,  here are the few that aroused suspicion:

Which digits are  correct ?   Which if any of subprograms  u,  v  and  w  dare you trust ?

Angle Symbols Relative to Horizon Relative to Ecliptic Plane Relative to Equatorial Plane

θ,  Θ Azimuth Right Ascension Longitude

φ,  Φ Elevation Declination Latitude

θ–Θ : 0.00123456784 0.000244140625 0.000244140625 1.92608738 2.58913445 3.14160085

φ : 0.300587952 0.000244140625 0.785398185 -1.57023454 1.57074428 1.10034931

Φ : 0.299516767 0.000244140654 0.785398245 -1.57079506 -1.56994033 -1.09930503

ψ ≈ u : 0.00158221229 0.0 0.0003452669770.000598019978 3.14082050 3.14055681

ψ ≈ v : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14061618 3.14061618

ψ ≈ w : 0.00159324868 0.000244140610 0.000172633489 0.000562231871 3.14078044 3.14054847
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Which if any of subprograms  u,  v  and  w  dare you trust?  They were rerun on the suspect 
data in different rounding modes mandated by  IEEE Standard 754.  Fortunately,  they 
were rerun on a system that permitted the directions of all default roundings  (to nearest)  
to be changed  without recompilation  of the subprograms.  Here are some results:

Only subprogram  w  seems practically indifferent to changes in rounding’s 
direction.  In fact,  it uses an unobvious formula stable for all admissible data.

Subprogram  u  uses a formula easy to derive but numerically unstable for 
subtended angles too near  0  or  π .  Subprogram  v  uses a formula familiar to 
astronomers though it loses half the digits carried when the subtended angle is 
too near  π ,  where astronomers are most unlikely to have tried it.  See  
Mindless.pdf   for formulas.

Without access to source code,  nor to another subprogram known to be reliable,  
how else might you have decided which program(s) to distrust first?

θ–Θ : 0.000244140625 2.58913445

φ : 0.000244140625 1.57074428

Φ : 0.000244140654 -1.56994033

ψ ≈ u : 0.000598019920NaN arccos(>1) 0.000598019920 3.14061594 3.14067936 3.14082050

ψ ≈ v : 0.000244140581 0.000244140683 0.000244140581 3.14039660 3.14159274 3.14039660

ψ ≈ w : 0.000244140610 0.000244140683 0.000244140610 3.14078045 3.14078069 3.14078045

Rounded: To Zero To +Infinity To –Infinity To Zero To +Infinity To –Infinity
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The ability to redirect rounding is mandated by  IEEE Standard 754 (1985)  for 
floating-point arithmetic.  It is a valuable diagnostic aid albeit far from foolproof.

Some compilers have supported dynamically redirected rounding,  but almost no 
programming languages support it.  The exceptions are a few  C99  compilers.

Java  outlaws redirected rounding.  See  
          www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf  .

The lack of use of this capability is leading to its atrophy.   Use it or lose it. 

For other desirable debugging tools we may wish were provided by programming 
development systems,  tools that employ high-precision floating-point and 
interval arithmetic combined  (they are not helpful enough by themselves),  see  
§14 of  www.cs.berkeley.edu/~wkahan/Mindless.pdf  ,  and  …/Boulder.pdf  .

For better exception-handling than provided by current programming languages 
with the exceptions of  C99  and perhaps  Fortran 2003,  see  …/Grail.pdf   and  
…/ARITH_17U.pdf  ,   and  pp. 46 - 73  of   …/Boulder.pdf   .


